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Abstract

A great many observables seen in intermediate energy heavy ion collisions can be explained on the basis of
statistical equilibrium.Calculations basedon statistical equilibriumcanbe implemented inmicrocanonical ensemble
(energy and number of particles in the system are kept fixed), canonical ensemble (temperature and number of
particles are kept fixed) or grand canonical ensemble (fixed temperature and a variable number of particles but with
an assigned average). This paper deals with calculations with canonical ensembles. A recursive relation developed
recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the
nature of phase transition in intermediate energy heavy ion collision, to study the caloric curves for nuclei and to
explore the possibility of negative specific heat because of the finiteness of nuclear systems. The model can also
be used for detailed calculations of other observables not connected with phase transitions, such as populations of
selected isotopes in a heavy ion collision.
The model also serves a pedagogical purpose. For the problems at hand, both the canonical and grand canonical

solutions are obtainable with arbitrary accuracy hence we can compare the values of observables obtained from
the canonical calculations with those from the grand canonical. Sometimes, very interesting discrepancies are
found.
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To illustrate the predictive power of the model, calculated observables are compared with data from the central
collisions of Sn isotopes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a central collision of two heavy ions. Nucleons from one nucleus will collide with nucleons
fromanother nucleus.After a few collisions a given nucleonmay lose the identity of its source. The system
then more resembles a hot fluid of nucleons in an overall volume. Depending upon the original beam
energy, this system may undergo an initial compression and then begins to decompress. During this time
the nucleons will interact with each other, at least between the nearest neighbours. As the density of the
systemdecreases, higher density regionswill develop into composites.As this collectionof nucleonsbegin
to move outward, rearrangements, mass transfers, nucleon coalescence and most physics will continue
to happen until the density decreases so much that the mean free paths for such processes become larger
than the dimension of the system. Subsequently, the objects follow the long-range Coulomb trajectories.
Our objective is to have a soluble model which describes the physics of the situation at this freeze-out
density when one averages many nucleus–nucleus collisions.
Although we chose central collisions to describe this scenario a similar situation will arise even for

semi-central or semi-peripheral collisions. In such cases, one may have a projectile like fragment (and
target like fragment and participants, region of violent collisions). For example, a projectile fragment
may be excited which resembles a system of hot particles whose centre of mass velocity is close to that
of the projectile[1].
The central assumption of the present article (andmany others) is that equilibrium statistical mechanics

can be used to describe the hot fluid of nucleons. Even the most well prepared experimental measure-
ment of an energeticnucleus–nucleuscollision represents an average of a very large number of initial
states. In addition to this large number of different initial states, a large number ofnucleon–nucleon
collisions occur within eachnucleus–nucleuscollision. Together, this means that for many experimental
observables almost all the relevant phase space can be opened up and described by the microcanon-
ical ensemble in which the probability of reaching a channely is �(y)/

∑
y �(y). Here�(y) is the

phase-space volume in the channely. In the canonical ensemble, the corresponding expression[2] is
written as exp(−f (y)/T )/

∑
exp(−f (y)/T ). Heref (y) is the free energy in the channely. Since

f (y) = −T lnQ(y), whereQ(y) is the canonical partition function in the channely, an equivalent ex-
pression isQ(y)/

∑
Q(y). A more detailed discussion of statistical equilibrium using reaction rates is

given in Appendix A.
The obvious experimental observables in heavy ion collisions are the number of nucleons and compos-

ites and their velocity distributions that result after the collision. The calculation of these in equilibrium
statistical mechanics for Bevalac physics ismore than 25 years old[3–5].At that time, the grand canonical
ensemble was used to describe the data from the Bevalac, which normally used beam energies higher than
250MeV/nucleon. However, at these energies most of the subtle and interesting features of equilibrium
statistical mechanics as it pertains to heavy ion collision disappear. As the cross-sections of composites
fall rapidly withA, themass number, themost interesting results were productions of newparticles such as
pions and kaons, which can be included in the statistical model. Some discussion of this production is also
given in Appendices A and C. Even so, Bevalac experiments brought out beautiful features of dynamics
and established narrow limits on compressibility of nuclear matter and the momentum dependence of the
real part of the optical potential.
The applications of equilibrium statistical mechanics for intermediate energy heavy ion collisions

started in the 1980s. At these energies, the efforts switched to microcanonical ensembles although the
concept of temperature was sometimes used[6–8]. One model called the Copenhagen SMM (statistical
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multifragmentation model) is frequently used[8]. Another popular model is the Berlin model[7]. The
use of the canonical ensemble, the main topic of this paper, is more recent[9]. It is as easy to implement
as the grand canonical (and more accurate since fluctuations in the number of particles are eliminated:
these sometimes cause large errors in computations of observables). It is orders of magnitudes simpler
than the microcanonical ensemble, although in the latter more fine tuning can be done. These fine tunings
do not appear important for most observables.
What are the important issues we want to learn about in intermediate energy heavy ion collisions? For

many, it is to extract from data signals of a liquid–gas phase transition in nuclear matter. Nuclear matter
is a hypothetical large chunk of matter withN = Z, where the Coulomb interaction has been switched
off. Thep–V diagram for nuclear matter with reasonable forces looks like a Van der Waals equation of
state[10]. One would then expect to see a liquid–gas phase transition if the experimental conditions are
optimal. Such optimal conditions are discussed by Curtin et al.[11] and Bertsch and Siemens[12]. For
Bevalac energies the evolution of the temperature would go above the phase transition temperature. But
accelerators at the National Superconducting Cyclotron Laboratory (NSCL), the TexasA& M cyclotron,
the GrandAccelerateur National D’ions Lourds (GANIL) and at Gesellschaft fur Schwerionenforschung
mbH (GSI) can reach the liquid–gas phase transition region and offer the best possibility for experimental
study. Further details of theoretical considerations which prompt an experimental investigation of the
liquid–gas phase transition can be found in[13].
Unfortunately, the investigation of liquid–gas phase transition in intermediate energy heavy ion colli-

sions is fraught withmany difficulties. Phase transitions occur in very large systems. In nuclear collisions,
we are limited to 300–400 nucleons (sometimesmuch less). For finite systems, signals of phase transition
get diluted and distinctions between first- and second-order transitions get blurred. The Coulomb inter-
action, which prevents large nuclei from forming, also interferes with the signals. It is thus necessary to
use theories to clarify the situation. If one has a theory which fits many data, not necessarily related to
phase transitions, but which, in addition, predicts a phase transition one has some hope for themodel to be
valid. In this paper we will discuss phase transitions and in addition, data which will be compared to the
thermodynamic model predictions.

2. The basic formulae

This section sets up the basic formulae of the model[9,14].
If there areA identical particles of only one kind in an enclosure at temperatureT, the partition function

of the system can be written as

QA = 1

A! (�)A . (1)

Here� is the partition function of one particle. For a spinless particle without any internal structure
� = (V/h3)(2�mT )3/2, wherem is the mass of the particle,V is the available volume within which each
particle moves andA! corrects for Gibb’s paradox. If there are many species, the generalisation is

QA =
∑∏

i

(�i)
ni

ni ! . (2)
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Here�i is the partition function of a composite which hasi nucleons. For a dimeri = 2, for a trimer
i = 3, etc. Eq. (2) is no longer trivial to calculate. The trouble is with the sum in the right-hand side of
Eq. (2). The sum is restrictive. We need to consider only those partitions of the numberAwhich satisfy
A =∑

ini . The number of partitions which satisfies the sum is enormous. We can call a given allowed
partition to be a channel. The probability of the occurrence of a given channelP(�n) ≡ P(n1, n2, n3, . . .)

is

P(�n) = 1

QA

∏ (�i)
ni

ni ! . (3)

The average number of composites ofi nucleons is easily seen from the above equation to be

〈ni〉 = �i

QA−i

QA

. (4)

Since
∑

ini = A, one readily arrives at a recursion relation[15]

QA = 1

A

A∑
k=1

k�kQA−k . (5)

For one kind of particle,QA above is easily evaluated on a computer forA as large as 3000 in a matter
of seconds. It is this recursion relation that makes the computation so easy in the model. Of course, once
one has the partition function, all relevant thermodynamic quantities can be computed.
We now need an expression for�k which can mimic the nuclear physics situation. We take

�k = V

h3
(2�mT )3/2 × qk , (6)

where the first part arises from the centre of mass motion of the composite which hask nucleons andqk
is the internal partition function. Fork = 1, qk = 1 and fork�2 it is taken from the Fermi-gas model.
For each composite consisting ofk nucleons, we approximate the intrinsic free energy at freeze-out by
E − T S = −W0k + �(T )k2/3 + kT 2/�0 − T × 2kT /�0, where�0 is a constant. This gives

qk = exp[(W0k − �(T )k2/3 + T 2k/�0)/T ] . (7)

Here, as in[8], W0 = 16MeV is the volume energy term and�(T ) is a temperature-dependent sur-
face tension term. The value of�0 is taken to be 16MeV. The explicit expression for�(T ) used here,
as in[8], is

�(T ) = �0[(T 2
c − T 2)/(T 2

c + T 2)]5/4

with �0=18MeV andTc=18MeV. In the nuclear case, one might be tempted to interpretVof Eq. (6) as
simply the freeze-out volume, but it is clearly less than that;V is the volume available to the particles for
the centre of mass motion. Assume that the only interaction between clusters is that they cannot overlap
one another. Then in the Van der Waals spirit, we takeV = Vfreeze− Vex, whereVex is taken here to be
constant and equal toV0=A/�0. The assumption that the interaction between different composites is only
reflected through an excluded volume and that this excluded volume is independent of multiplicity is an
idealisation which will fail for a non-dilute system.We therefore restrict the model, somewhat arbitrarily
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to volumesVfreeze�2V0. There are experimental signatures thatVfreezeis indeed greater than 2V0 [13] so
this is not a debilitating feature of the model. In all our considerations we restrict�/�0 to less than 0.5.
Among quantities of interest is the inclusive cross-section given by Eq. (4). Actually, this is a simplifi-

cation. The occupation given by Eq. (4) is the occupation of the composite withi nucleons at temperature
T. Both the ground state and the excited states contribute to〈ni〉. Some of the excited states will be particle
unstable and will decay into lower mass composites before they reach the detector. On the other hand,
some higher mass composites, will, by the same argument, decay into the compositei. In later sections,
where we compare populations with data, this aspect will be taken care of. The expression forEat a given
temperatureT is simple (this is needed for a caloric curve which is measured in experiments). The energy
carried by one composite is given by

Ek = T 2� ln�k/�T = 3
2 T + k(−W0 + T 2/�0) + �(T )k2/3 − T [��(T )/�T ]k2/3 .

Of these, the first term comes from the centre of massmotion and the rest fromqk. The termT [��(T )/�T ]
k2/3 comes from the temperature dependence of the surface tension. It has a small effect. The energy of the
whole system is given byE = T 2(1/QA)�QA/�T . Using Eqs. (2) and (4) we arrive at a very transparent
formula:E =∑ 〈nk〉Ek. The pressure is given byp = T � lnQA/�V . If for purposes of illustration, we
neglect the long-range Coulomb interactions and use Eqs. (2) and (4), we getp = T (1/V )

∑ 〈ni〉. This
is just the law of partial pressures.
For the purpose of analysing phase transitions in the model, it is very useful to calculate the av-

erage value of the largest cluster in the ensemble. Eq. (2) shows that the size of the largest cluster
varies. In that ensemble there is a term�A

1 /A!. For this the largest cluster is the monomer. For exam-

ple, in Eq. (2) we also have a term(�n
1/n!)�(A/2−n/2)

2 /(A/2 − n/2)!. Here the largest cluster is the
dimer. Consider buildingQA with �1,�2, . . . ,�k,0,0,0,0, . . . . In this ensemble the largest clus-
ter will span from a monomer upto a composite withk nucleons. Let us label this partition function
QA(�1,�2, . . . ,�k,0,0,0, . . .). Let us also build aQA where the largest non-zero� is�k−1. The parti-
tion function isQA(�1,�2, . . . ,�k−1,0,0,0,0). In this ensemble all the previous channels are included
except where the largest cluster hadk nucleons. If we define

�QA(k) = QA(�1,�2, . . . ,�k,0,0, . . .) − QA(�1,�2, . . . ,�k−1,0,0, . . .) ,

then the probability of the largest cluster havingk nucleons is

Pr(k) = �QA(k)

QA(�1,�2, . . . ,�A)
. (8)

If we now label the average value of the largest cluster as〈kmax〉, then〈kmax〉 =∑
k × Pr(k). A more

useful quantity is〈kmax〉/A. The limits of this are≈ 0 and 1.
Another interesting quantity which has been the subject of an enormous amount of interpretation[17]

is the multiplicity distribution of a species or a group of species. In most models, this requires a very
elaborate Monte-Carlo calculation. In the canonical ensemble, there is an elegant equation

Pn(k) = 1

QA

�n
k

n! QA−nk(�1,�2, . . . ,�k−1,�k = 0,�k+1, . . . ,�A) . (9)

HerePn(k) is the probability of obtaining the compositek n times.
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The strength of the canonical model as described here lies in the fact that all calculations above avoid
Monte-Carlo sampling. In many other models, a Monte-Carlo sampling over the channels is required.
Since the number of channels is enormous, this requires great ingenuity as well as much more computer
time.
The model of one kind of particles where composites have a volume energy, a surface energy and

excited states is already very useful for investigations of phase transition, caloric curves, etc. and we will
pursue this in latter sections a great deal. Let us, nonetheless, introduce here the model with two kinds of
particles (so that one can compare with actual nuclear cases)[13,14,16]. Now a composite is labelled by
two indices� → �i,j . The partition function for a system withZ protons andN neutrons is given by

QZ,N =
∑∏

i,j

�
ni,j
i,j

ni,j ! . (10)

There are two constraints:Z =∑
i × ni,j andN =∑

j × ni,j . These lead to two recursion relations
any one of which can be used. For example

QZ,N = 1

Z

∑
i,j

i�i,jQZ−i,N−j , (11)

where

�i,j = V

h3
(2�mT )3/2(i + j)3/2 × qi,j . (12)

Hereqi,j is the internal partition function. These could be taken from experimental binding energies,
excited states and somemodel for the continuum or from the liquid dropmodel in combination with other
models. The versatility of the method lies in being able to accommodate any choice forqi,j . A choice
of qi,j from a combination of the liquid drop model for binding energies and the Fermi-gas model for
excited states that has been used is

qi,j = exp
1

T

[
W0a − �a2/3 − �

i2

a1/3
− s

(i − j)2

a
+ T 2a/�0

]
, (13)

wherea = i + j, W0 = 15.8MeV, � = 18.0MeV, � = 0.72MeV, s = 23.5MeV and�0 = 16MeV.
One can recognise in the parametrisation above, the volume term, the surface tension term, the Coulomb
energy term, the symmetry energy term and contributions from excited states.
The Coulomb interaction is long range. Some effects of the Coulomb interaction between different

composites can be included in an approximation called theWigner–Seitz approximation. We assume, as
usual, that the break up into different composites occurs at a radiusRc, which is greater than the normal
radiusR0. Considering this as a process in which a uniform dilute charge distribution within radiusRc

collapses successively into denser blobs of proper radiusRi,j , we write the Coulomb energy as[8]

EC = 3

5

Z2e2

Rc

+
∑
i,j

3

5

i2e2

Ri,j

(1− R0/Rc) . (14)
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It is seen that the expression is correct in two extreme limits: very large freeze-out volume (Rc → ∞)

or if the freeze-out volume is the normal nuclear volume so that one has just one nucleus with the proper
radius.
For the thermodynamic model that we have been pursuing, the constant term3

5Z
2e2/Rc is of no

significance since the freeze-out volume is assumed to be constant. In a mean-field sense then, one would
just replace the Coulomb term in Eq. (13) by�(i2/a1/3)(1.0− (�/�0)

1/3).
Before we leave this section, we mention that the mass parametrisation implied by Eq. (13) can be

vastly improved with only slight complications. We will later present results with the improved formula
[16]. A pedagogical issue: although we have derived results here based on Eq. (1) which takes care of
(anti)symmetrisation only approximately it is shown in[18] that the specific structure of Eqs. (5) and (11)
occur more generally when (anti)symmetrisation is included properly. Part of this argument is presented
in Appendix B which also demonstrates that results based on this section are quite accurate.

3. General features of yields of composites

We pursue here the model of one kind of particles. For 200 particles at a constant freeze-out volume=
3.7V0 we have plotted inFig. 1 〈nk〉 (in the figure we call thisY (a) = yield of composite of massa) at
three temperatures.At the lowest temperature shown, the curve has aU shape. The yieldsY (a) first begin
to fall, then reach a minimum and then the yields for heavier masses increase finally cutting off at 200.

100 101 102

a

10-5

10-3

10-1

101

Y
 (

a)

T = 5.80 MeV
T = 6.35 MeV
T = 7.30 MeV

Fig. 1. TheY (a) againsta at three different temperatures. The dissociation system has 200 particles and the freeze-out density
is 0.27�0.
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In the literature the heavy fragments are called the liquid phase. The light fragments are gas particles.
As the temperature increases, the maximum at the highera decreases in height finally disappearing at
∼ 6.35MeV. At higher temperaturesY (a) falls monotonically. The surface tension plays a crucial role
in this evolution. At any temperature the lowest value of the free energyE − T S will be obtained. It
costs in the energy termE to break up a system. A nucleus ofA nucleons has less surface than the total
surface of two nuclei each ofA/2 nucleons (the volume energy term has no preference between the two
alternatives). Therefore at low-temperature one will see a large chunk. The−T S term favours break up
into small objects. The competition between these two effects leads to the general features ofY (a) as a
function of temperature. As we will see in the next section, the temperature at which the maximum of the
yield at the high side ofa disappears is the phase transition temperature.
Similar features are seen also in other models of multifragmentation as applied to nuclear physics. The

earliest such model was the percolation model[19,20]. The model has a parameterp which gives the
probability of two nearest neighbour sites joining together as in a composite. Beyond a certain value of
p, a percolating cluster is formed which goes from edge to edge of the system. This corresponds to the
large cluster which forms at the lower temperature inFig. 1. The lattice gas model[21] has similarity
with the percolation model but has a Hamiltonian, includes percolation model as a subset[22] and also
includes the formation of a percolating cluster.

4. Phase transition in the model

4.1. Signatures from thermodynamic variables

We now begin the discussion of a phase transition in the model. The free energy of a system of
particles is given byF = −T lnQA and lnQA is directly calculable from Eq. (5). For a system of 200
and 2000 particles, the free energy per particle is shown in the top panel ofFig. 2, as a function of
temperature for fixed freeze-out density 0.27�0. An approximate break in the first derivative ofF/A is
seen to develop at≈ 6.35MeV for 200 particles and at≈ 7.15MeV for 2000 particles. We believe the
break would be rigorous if we could go to an infinite system. A break in the first derivative implies a
first-order phase transition and a discontinuous change in the value of entropy per particle. This would
imply that the specific heat at constant volume per particlecv = (�(E/A)/�T )V would go through a
peak (for an infinite system this peak would go to∞). We show this in the middle panel ofFig. 2 for
systems of 200 and 2000 particles, where we find that the width of the peak decreases and the height of
the peak increases as the particle number increases. As expected, the temperature where the specific heat
is maximum also coincides with the temperature at which the maximum in the high side ofa (Fig. 1) just
disappears.
Another very interesting quantity is the quantity〈kmax〉/A (i.e. the size of the largest cluster) as tem-

perature varies. This can be calculated using Eq. (8).We defineTb as the temperature where the break in
the derivative of the free energy occurs (this is the first-order phase transition temperature). Calculating
the size of the largest cluster at different temperatures, we find that〈kmax〉/A approaches 1 asT <Tb
and approaches a small number asT >Tb. The change is smooth for low mass nuclei (bottom panel of
Fig. 2) but becomes more sudden for larger systems. For large systems there is a large blob (i.e., liquid)
belowTb which disappears as soon asT crossesTb. This we think is a very engaging example of boiling
emerging from a theoretical calculation.
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To summarise, the thermodynamic model predicts unequivocally a first-order phase transition at in-
termediate energy. In the realm of density�/�0�0.5 for which we believe the model to be reasonable,
there is no critical point. Bugaev et al.[23] have taken the model beyond this range of density and find
that the critical density is�/�0 = 1 and the temperature is 18MeV when the surface tension�(T ) goes
to zero.We end this section by noting that microcanonical calculations using statistical equilibrium were
also suggestive of a first-order phase transition occurring at intermediate energy[24,6].

4.2. Power-law and scaling behaviour of composite yields

Arather largepart of literature inheavy ion reactionpostulates that inmultifragmentationat intermediate
energy, one is near the critical point of nuclear matter. One then proceeds to determine from the data
the critical temperature and various critical exponents. The working formula, obtained from models of
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critical phenomena (to see how the formula arises, refer to[25,26]) is

〈na〉 = a−�f (a�(T − Tc)) . (15)

Here� is called the Fisher exponent[27], a is the mass number of the composite,� is a critical exponent
andTc the critical temperature;f is as yet an unspecified function, but instead of being a general function
of aandT, it is a function only of the combinationa�(T −Tc). This is called scaling. AtT =Tc, the yield
〈na〉 = a−�f (0) is a pure power law, but away fromTc it will deviate from a power law.
In intermediate energy collisions, even if we proceed under the assumption that one is observing critical

phenomena we cannot expect near perfect fit to Eq. (15) whose validity depends upon the dissociating
system being very large. Also, the range ofa is to be chosen judiciously. It cannot be very small (since
Eq. (15) applies to “large”a’s [25]). Butaalso should be truncated on the high side (significantly smaller
than the size of the dissociating system).
With these provisos, we can at best expect a moderately good fit. Extracting�, � andTc from a given

set of〈na〉 (either from experiment or models) when only an approximate fit is expected is non-trivial
and not unique. We skip the details here which are given in[28–30]. A more sophisticated method of
extraction of the relevant parameters can be found in[31]. The same technique is used in[32].
The EOS collaboration[33] obtained data from break up of 1.0 GeV per nucleon gold nuclei on a

carbon target. Depending upon the impact parameter, the excitation energy (or the temperature) of the
projectile like fragment which breaks up into many composites will vary. In[28,29] it is argued thatT in
Eq. (15) varies linearly with the charged multiplicitym and the scaling function of Eq. (15) is changed
from f (a�(T − Tc)) to f (a�((m − mc)/mc)). Heremc is the critical multiplicity. Having determined
from the data�, � andmc (as mentioned before we are skipping details of how the extraction is done but
this can be found in[28,29]) one then verifies if the scaling law works: that is, we check if for alla’s,
〈na〉a� will fall on the same curve when plotted as a function ofa�(m − mc)/mc. How well this works
can be seen, for example, inFig. 18of [30]. The deviations from the hypothetical “universal” curve are
by no means negligible, but can we assume that the scatter of points is entirely a finite particle number
effect and conclude that we have indeed seen evidence of critical phenomena?
To resolve this, we play a theoretical game. We take the thermodynamic model (which we know has

only a first-order phase transition), pick a system with particle numberA, generate〈na〉 for different
temperaturesT and from these data extract best possible values of�, � andTc. Having obtained these we
examine how well the scaling law applies. This is shown inFig. 3. The figure is taken from[32] where
other similar examples are displayed. For the model, deviations from one “universal” curve are smaller
than what the EOS collaboration data gave. We might conclude we have extracted the model critical
temperature and the critical exponents. These would be wrong conclusions, of course, because the model
has only a first-order phase transition. In fact, the value ofTc one extracts this way is quite close toTb,
the first-order phase transition temperature.
In [30] theCopenhagenSMM isused to show that approximate scaling is obtained.Thehopewould then

be that the theory also demonstrated criticality. The SMM is, in spirit, very close to the thermodynamic
model, thus we doubt that the very approximate collapse of〈na〉a� to one curve is any indication of
criticality. It is impossible to disentangle what errors arise because the wrong formula is applied and what
errors arise because of the finiteness of the system and many other factors such as the Coulomb force,
pre-equilibrium emission etc. Experimental data would have a very hard time of choosing between a first
and a second-order transition.
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From 8GeV/c�− on Au data, the ISiS[34] collaboration obtained the caloric curve[35]. The specific
heat was obtained by differentiating with respect toT. Experiment shows that the peak of the specific
heat coincides well with the position where the	2 for

∑
(〈na〉 − Ca−�)2 minimises. Here bothC and�

are taken as parameters to be fixed by minimisation. The canonical model gives similar results. Further
details of experiment and theory can be found in[36] where effects of the Coulomb interaction on the
position of the maximum of the specific heat is discussed in detail.
We turn now briefly to another phenomenological model which was invoked 20 years ago[37] but was

revived recently[38]. This is yet another example where evidence for criticality can be drawn too hastily.
Consider the formation of a droplet containinga particles in the liquid phase surrounded byb particles
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in the gas phase. At constant temperature and pressure, the Gibbs free energy is the relevant factor.
Then

Gwithdrop= 
la + 
gb + 4�R2� + T � ln a

andGnodrop= 
g(a + b).
The probability of forming a droplet containingaparticles is proportional to exp(−�G/T ), so that the

yield of droplets of sizea is

〈na〉 = Ca−� exp[(
g − 
l)a/T + c2a
2/3/T ] . (16)

Here both
l and
g are functions ofT. At coexistence and also at critical temperature, they become equal
to each another. Alsoc2 is a function of temperature and atTc, the coefficientc2 goes to zero. Since
aboveTc, there is no distinction between the liquid and the gas phase, one cannot speak of droplets. Thus
the theory only applies toT <Tc. As such, the formulation is more limited than that of Eq. (15) which
applies to both sides ofTc. We now generate values of〈na〉 from the thermodynamic model for different
temperatures and try to fit these “data” using Eq. (16). The following fit was tried. We set� = 2. Let
� = (
g − 
l)/T , � = c2/T . We fit the calculated〈na〉 toCa−2 exp(�a + �a2/3) at different temperatures
where�, � values at each temperature are varied for best fit. The values of�, � as functions of temperature
are shown inFig. 4wherewe also show that the parametrisation fits the values of〈na〉 very accurately. The
values of� and� both go to zero near temperatureT = 6.5MeV suggesting that the critical temperature
is 6.5MeV. Of course, this conclusion would again be wrong since the model which gave these〈na〉’s
has only a first-order phase transition.
One problem is that whenever a fit, whether through Eq. (15) or through Eq. (16), is done, the fit is

attempted for a narrow range,a = 6–40. In this limited range moderate to excellent fits are obtainable
for different looking parametrisations. It is shown in[32] that if the range ofa could be extended to
beyond 100, different parametrisations would diverge. Unfortunately, the range ofa has to be limited.
For example, higher values ofawould have contamination from fission processes which is something we
do not wish to include. If we are stuck to a limited range ofa’s, we will also be limited by ambiguity.
The emphasis towards unravelling critical phenomena from data on intermediate energy heavy ion

collisions is at least partly due to history. The observation by the Purdue group[39] that the yields of the
fragments produced inp + Xe andp + Kr obeyed a power law〈na〉 ∝ a−� led to a conjecture that the
fragmenting target was near the critical point of liquid–gas phase transition. The origin of this conjecture
is the Fisher model[27] which predicts that at the critical point the yields of the droplets will be given by
a power law. Also the first microscopic model that was used[19,20] to compute yields of fragments was
the percolation model which has only a continuous phase transition and a power law at criticality. The
power law is no longer taken as a “proof” of criticality. There are many systems which exhibit a power
law: mass distribution of asteroids in the solar system, debris from the crushing of basalt pellets[40] and
the fragmentation of frozen potatoes[41]. In fact, the lattice gas model which has been used a great deal
for multifragmentation in nuclei gives a power law at the critical point, at the co-existence curve (this is a
first-order phase transition provided the freeze-out density is less than half the normal density) and also
along a line in theT –� plane away from the coexistence curve[42–44].
We conclude this section by stating that the lattice gas model which has a Hamiltonian and can be and

has been used to fit many data (not in any obvious way connected with phase transition) also predicts a
first-order phase transition at intermediate energy[42,43].
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4.3. Comparison with mean-field theory

Here we concentrate on the thermodynamic model, but as applied to nuclei with neutrons and protons.
The operative equations are (10)–(13) but we will switch off the Coulomb term (� of Eq. (13) will be set
to zero). The objective is to compare with finite temperature Hartee–Fock results for nuclear matter. For
nuclear matter the Coulomb interaction has to be switched off and one retains only the nuclear part of the
interaction.
Phase transitions are often considered in themean-fieldmodel. Examples for the present discussion are

[10,12,13]. Invariably a grand canonical ensemble is used characterised by a neutron chemical potential

N(T , �)andaproton chemical potential
P (T , �). Theuseof thegrand canonicalmodelwould imply that
the results are valid for very large systems although in nuclear physics we often use the grand canonical
ensemble for not so large systems as well.
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Muller and Serot[45,46]used the mean-field model to investigate phase transition in nuclear matter.
Normally nuclear matter means a very large system withN = Z with the Coulomb force switched
off. For this section we will use the term nuclear matter for very large systems butN can be different
from Z. The Coulomb is switched off as usual. Define proton fractiony = Z/(N + Z). Symmetric
nuclear matter hasy = 0.5 and would have a first-order phase transition below the critical point. But
for y deviating significantly from 0.5, these authors demonstrate with a more general Maxwell like
construction that the first-order phase transition would turn into second order. Further the phase transition
would take place neither at constant volumenor at constant pressure but would have amore general path to
traverse.
The general characteristics of mean-field theories is that one is constrained to have one density.

Having the same density everywhere is a big price to pay. For example, this would not permit a
liquid phase at one place and a gas phase at another. The limitation of one density only shows up
as mechanical instability, i.e., in parts of the equation of state diagram (p − � isothermals)�p/��
turns out to be negative. This is unacceptable for infinite matter and then one has to, by hand, cor-
rect this using a Maxwell construction. The thermodynamic model is very different. Here, for example,
�/�0 = 0.3 does not mean that at the freeze-out volume, matter is uniformly stretched. Rather matter
breaks up into different blobs all with the same density�0 but there are empty spaces between blobs.
If there is a large blob, we identify it as liquid, nucleons and light composites in the adjoining spaces
form the gas (in[47], it is shown that this last scenario has a lower free energy compared to uniform
stretching as assumed in Hartree–Fock theory). For large matter, there is no need for(�p/��)T to be
negative.
A similar thing happens with isospin fractionation. In mean-field theory, there is one value ofy every-

where. Experimentally, it is verified that if the dissociating system has a smally, then after break up, the
largest blob hasy >ydisswhereasnp/(np + nn)< ydiss, wherenp, nn are free protons and free neutrons,
respectively. Hereydiss is they value of the dissociating system. One might say the liquid phase has a
differenty from that of the gas phase. Again mean-field theory would have a hard time accommodating
this. It must have the same value ofy everywhere and the fact that this is an unstable situation shows
up in the following way. If we draw
P (
N) as a function ofy at constant temperature, the derivative
(�
P /�y)p can turn out to be negative (equivalently(�
N/�y)p can turn out to be positive). In the ther-
modynamic model, isospin fractionation happens naturally. In general, the model has, as final products,
all allowed composites,a, b, c, d, . . ., where the compositea hasya = ia/(ia + ja) whereia, ja are the
proton and neutron numbers of the compositea. The only law of conservation isZ =∑

a ia × na and
N =∑

a ja × na. So a large chunk can exist with highery than that of the whole system and populations
of other species can adjust to obey overall conservation laws. Whatever partition lowers the free energy
will happen. Since we are using a canonical model, we do not need the chemical potentials
P or 
N but
we can compute them anyway from the relation
 = (�F/�n)V,T . We know the values ofQZ,N,QZ−1,N
andQZ,N−1. SinceF = −T lnQ, one has
P = −T (lnQZ,N − lnQZ−1,N ) and similarly for
N .
Calculations with the canonical model discussed in this article, do not show regions of negative

(�
P /�y)p,T [48,49]. These also suggest that the phase transition in the canonical model remains first-
order for asymmetricmatter.Weshow inFig. 5results ofcV calculation for different degreesof asymmetry.
One sees that as the system gets bigger, the maximum incV becomes narrower and higher, ensuring there
will be a break in the first derivative of the free energy in the large matter limit.
Chemical instability for finite systems in Hartee–Fock theory has also been worked out. Contributions

of both Coulomb and surface terms can be included. For details see[51–53].



16 C.B. Das et al. / Physics Reports 406 (2005) 1–47

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Temperature (MeV)

0

10

20

0

10

20

C
V
/A

A=200

A=500

A=1000

0

2

4

6

y=0.30

y=0.40

y=0.50

Fig. 5. TheCV /A as a function of temperature for systems of 200, 500 and 1000 particles with different proton fractions
(y = Z/A).



C.B. Das et al. / Physics Reports 406 (2005) 1–47 17

5. Comparison of canonical and grand canonical

As noted in the introduction, the grand canonical version of the model we are pursuing in this paper
has been known and used for a long time. Now that we know how to treat an exact number of particles
rather than an ensemble of particle numbers, it will be useful in a few cases to examine, given that our
dissociating system has an exact number of particles, how the use of grand canonical ensemble affects
the prediction of observables. For simplicity, we start with the model of one kind of particles and our
dissociating systemhas 200 particles. Thuswe can havemonomers, dimers, trimers, etc. up to a composite
of 200 particles. In the grand canonical ensemble, the average number of composites withk nucleons is
given by

〈nk〉 = exp(
k)�k = exp(
k)V �̃k . (17)

Here is the inverse of temperature and�k is the same as defined in Eq. (6) and
 is the chemical potential.
We also usẽ�=�/V , where�̃ depends only on the composite and the temperature but not on the volume
of the dissociating system. The chemical potential is determined by solving

� =
km∑
k=1

k exp(k
)�̃k . (18)

In this examplekm is the number of particles in the largest cluster= 200. Having determined
 we now
find 〈nk〉 from 〈nk〉 = exp(k
)V �̃k.
In Figs. 6and7, we make a comparison of〈nk〉’s from canonical and grand canonical ensembles. The

value ofVwas set at 2.7V0. Results are shown for temperatures below the phase transition temperature and
above it.Fig. 6seems very reasonable. The overall features are similar. The differences get highlighted in
Fig. 7. At temperature 7.3MeV,〈nk〉GC and〈nk〉C are practically the same uptok =40 but deviate wildly
afterwards. Since most of the time we are not interested in the heavier products andk = 40 is the limit
of intermediate mass fragments one is investigating, the grand canonical ensemble does an adequate job.
We must be aware however, that, for heavy composites the grand canonical ensemble does a very poor
job. The accuracy of the grand canonical ensemble at temperature 5.8MeV (below the phase transition
temperature) is absolutely awful for almost all composites. This is also the temperature range appropriate
for most intermediate energy reactions. It is thus dangerous to use the grand canonical ensemble in
intermediate energy heavy ion reactions.
If however, one is only interested in finding the ratio of populations of two adjacent composites, the

grand canonical continues to be useful over a larger domain. This is shown inFig. 8.
The very different populations of composites below the phase transition temperature leads to drastically

different caloric curves in the grand canonical ensemble and canonical ensemble. As noted in Section 4
and shown inFig. 2, for a fixed density the specific heat per particle maximises at a certain temperature.
Keeping density fixed, if we increase the number of particles the height of themaximum increases and the
width decreases. InFig. 9we show this again for 200 and 2000 particles, but now we have also indicated
the specific heat calculated in the grand canonical ensemble. In both models, the peak of the specific
heat increases when we go from 200 to 2000 particles and the widths decrease but the results are much
more dramatic in the canonical model. In particular, it is not obvious that the specific heat in the grand
canonical ensemble will attain extraordinary heights andminiscule widths. In fact, it was suggested in the
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literature, engaging the grand canonical ensemble, that there is a discontinuity in the value of the specific
heat at phase transition but no infinity[23].
To understand at a more fundamental level the cause of the difference in values of specific heats in the

two ensembles, we will analyse the case of 2000 particles in some detail. In the grand canonical model,
even though we are using the average value of the particle number to be 2000, there are, in practice,
systems with varying particle numbers (in principle, from 0 to∞). The part which has, for example, 1000
particles has density half of the prescribed density. The peak in the specific heat of this half density will
occur at a different temperature than that which maximises the specific heat at density 2000V−1. Thus
there is a smearing effect. This is always an inherent problem with using the grand canonical ensemble
but most of the time the fluctuation from the average value is small enough that one can live with it. This
would have meant, in our present example, the part which contains 1000 particles is so negligibly small
that it does not matter. This however is not so in the present model below the phase transition temperature.
In the present case, the grand canonical calculation starts out by obtaining
 from Eq. (18) where

km = 2000; � was taken to be�0/2.7. The average value of〈nk〉 is then given by Eq. (17) where
V = 2000× 2.7/�0. With this we have

∑k=2000
k=1 k〈nk〉 = 2000. The fluctuations in the model can

be calculated easily. We have the general statistical relation

1

2
�2 lnQgr.can

�2

= 〈N2〉 − 〈N〉2 . (19)

HereQgr.can is the grand canonical partition function. We can write two expressions forQgr.can. One is

lnQgr.can=
k=2000∑
k=1

exp(
k)�k . (20)

This immediately leads to

〈N2〉 − 〈N〉2 =
k=2000∑
k=1

k2〈nk〉 (21)

which is easily calculable. The other expression we can exploit in the present case is

Qgr.can=
∞∑

K=1

exp(
K)QK,km , (22)

whereQK,km is the canonical partition function ofK nucleons but with the restriction that the largest
cluster cannot have more thankm(=2000) nucleons. We can calculate these explicitly using methods
of Section 2. For practical reasons,K has to be cut off at the upper end. Here we usedK = 10,000 as
the upper limit. Since the average number of particles is 2000, this appears to be a safe upper limit in
Eq. (22). The quantity
 is known from solving Eq. (18).
The fluctuations calculated with Eqs. (21) and (22) are shown inFig. 10. One sees that there is a

temperature above which the fluctuations are small. At these temperatures, the grand canonical value of
specific heat is indistinguishable from the canonical value. But as the temperature is lowered, fluctuations
grow rapidly and the results begin to diverge.
It is interesting to study fluctuations further. The probability ofK particles being in the grand canonical

ensemble is∝ eK
+lnQK . We plot inFig. 11exp[
(K − A) + lnQK − lnQA]. This takes the value 1
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atK =A and in the normal picture of the grand canonical ensemble would drop off rapidly on either side
of A. This does happen at temperatures higher than the boiling temperature. The case atT = 7.7MeV
corresponds to a standard scenario. But the situation at temperature 7.3MeV is drastically different. The
probability does not maximise atK = A but at a lower value. It is also very spread out with a periodic
structure. The periodicity is 2000 and is linked with the fact that in the case studied, the largest composite
has 2000 nucleons and at low temperatures, this composite will play a significant role.
More discussions on this case can be found in[50].

6. Specific heat at constant pressure

Wehave usedCV , the specific heat at constant volume a great deal in the previous sections. In canonical
modelsCV is always positive. Writing〈E〉 =∑

Ei(V )exp(−Ei(V ))/
∑

exp((−Ei(V )) andCV =
(�〈E〉/�T )V , we getCV = (1/T 2)〈(E − 〈E〉)2〉 which is the expectation value of a positive definite
operator. However, specific heat at constant pressure allows no such generalisations. Here we enter into
a discussion of the specific heat at constant pressure in the thermodynamic model. We should add that
dissociation after two heavy ions collide is largely an uncontrollable situation and we do not know what
is a better description: disassembly at constant volume, disassembly at constant pressure or a hybrid
situation.
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Lately, interest in the topic has increased with the realisation that for finite systems,Cp can sometimes
be negative and such cases might arise in heavy ion collisions[54–56]. To study this possibility in our
model, we find it convenient to look at thep–� diagram at constant temperatures (isothermals). This is
shown inFig. 12. We see there are regions of mechanical instability where(�p/��)T <0. We will show
that the occurrence of negativeCp happens in this region.
Themost famouscaseofmechanical instability is theVanderWaalsequationof state. Innuclear physics,

if one uses Hartree–Fock theory, then also large regions of mechanical instability appear. Examples of
this can be seen in many published works:[10,9,48]. All these published works are for infinite systems
(unlike thep–� diagram forFig. 12which is drawn for 200 particles). Quantitative examination of the
equation of state diagrams reveal that the regions of mechanical instability are far bigger in the case of
Hartree–Fock as opposed to what we see inFig. 12. In fact, plotted on the same scale, the region of
mechanical instability would be tiny (ref.Fig. 1 of [48]) and one would have to plot it in an expanded
scale (such as is done inFig. 12) to study it quantitatively.
In the Van der Waals case or in the Hartree–Fock case for infinite nuclear matter one uses a Maxwell

construction to replace the region of mechanical instability[2]. In the thermodynamic limit, regions of
mechanical instability should disappear. In our case there is no prescription for Maxwell construction.
Also since our system is very finite, we take the mechanical instability inFig. 12 as real and follow
the consequences for the specific heat. In the figure we have drawn isotherms at three temperatures;
T1<T2<T3. HereT2 is only slightly higher thanT1. Instead of� let us use the variableV ∝ 1/�.
The pressure is given byp = T (m/V ) wherem is the multiplicity. [We actually usem − 1 but this
is inconsequential for the discussion to follow.] For the simple case of monomers only,p is given by
p = T (A/V ) whereA is the number of particles. This number does not change thusp keeps falling with
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Fig. 12. EOS in the canonical model for a system ofA = 200. The largest cluster also hasN = 200.

V. In our case,m is significantly less thanA. It is not a constant asV and/orT change. As can be readily
guessed,m increases withTat constantV;malso increases withVat constantT. Negative compressibility
is marked by(�m/�V )T >m/V .
Let us consider the pointsc andd in Fig. 12. Let c have multiplicitym, volumeV and temperatureT;

for d the corresponding quantities arem+ �m,V + �V andT + �T . Here�V is negative,�T is positive.
Using

p = T
m

V
= (T + �T )

m + �m

V + �V
, (23)

we arrive at

�m

m
= �V

V
− �T

T
. (24)

In the region (c, d), �V is negative,�T is positive thus�m is negative. Ifmgoes down then so does the
potential energy (creatingmoremcreatesmore surface and hence increases energy). The change in kinetic
energy is:32[(m + �m)(T + �T ) − mT ] which using Eq. (24) is≈ 3

2(�V/V )mT . This is negative also.
Thus both kinetic and potential energies fall giving rise to a negativeCp. If on the other hand we consider
pointsa andb, point a has both a bigger volume and a bigger temperature thus�m is positive. This
would make both the kinetic and potential energies rise when one moves fromb toa. This is illustrated in
Table 1. The caloric curve ofFig. 13shows regions of negativeCp.
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Table 1
Variation of energies per particle (MeV) with temperature (MeV) in the negative and positive compressibility zones, for
p = 0.017MeV fm−3

T �/�0 ek/A epot/A etot/A

�p

��
<0

6.0 0.146 0.978 −5.235 −4.257
6.1 0.212 0.638 −6.970 −6.332
6.2 0.392 0.294 −8.708 −8.414

�p

��
>0

6.0 0.104 1.422 −3.271 −1.849
6.1 0.090 1.653 −2.513 −0.859
6.2 0.082 1.824 −2.027 −0.202
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Fig. 13. Caloric curve at a constant pressure(p=0.017MeV/fm3) in the canonical model withA=200 andN= 200. The solid
and dashed portions of the curve give−ve and+ve cp, respectively.

Let us consider the thermodynamic limit. This will be reached when the number of composites near
the boundaries of the freeze-out volume is negligible to the number of composites well inside. In this
limit, intensive variables remain unchanged when extensive variables are changed by a constant factor.
Thus ifA is the total number of nucleons in the system and we change, at constant temperature,A →
A + �A,V → V + �V the pressurep = (m/V )T must remain constant. This means, for constantT,
whenA → A + �A,V → V + �V ,mmust change tom → m + �m. Now for compressibility,A stays
atA, butV to V + �V thusmmust change to less thanm + �m. Then the pressure will fall whenV is
increased, i.e., regions of negative compressibility disappear.
It would be nice to demonstrate this feature directly by doing canonical calculations for larger and

larger systems. The area over which negative compressibility appears does drop as larger and larger
systems are used but the convergence is slow. Instead we will use the grand canonical ensemble to get to
theA = ∞ limit. For a given density we solve Eq. (18), setting oncekm = 200 and 2000, the other time.
This means, in the first case, the largest composite has 200 nucleons and in the second case, the largest
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For the canonical calculation, the left and right panel hasA=200 and 2000, respectively, but for the grandcanonical calculations,
A = ∞.

composite has 2000 nucleons. The temperature is chosen to be 6MeV. Eq. (18) has no reference to either
A orV (only their ratio), the implication being for the grand canonical model to be good each factor is∞
or very large. Pressure in the grand canonical ensemble is given byp = (T /V ) lnQgrandwhich leads to

p =∑km
k=1 exp(k
)�̃k.

Fig. 14compares the canonical calculation withA=200 andkm ≡ N =200 withA=∞ andN =200.
We see in the low density (the gas phase) the two diagrams coincide. The rise of pressure with density
is quite rapid and linear. After the two diagrams separate, the rise of pressure with density in the grand
canonical ensemble slows down considerably but there is no region of mechanical instability although
the canonical calculation with 200 particles has a region of instability. In the grand canonical result which
represents the thermodynamic extrapolation, we have not reached the classic liquid–gas coexistence limit
where there would not be any rise of pressure at all (such as in Maxwell’s construction). We think the
reason is this. The largest cluster is 200 which is not a big enough number. We now increase the largest
cluster size to 2000. Now the coexistence region is very clear and there is an unmistakable signature of
first-order phase transition. In the same figurewe also show results of canonical calculationwithA=2000
andN=2000. The region ofmechanical instability has gone down considerably but it has not disappeared
showing that we have not reached the thermodynamic limit yet.
Thermodynamics allowsCp to become negative. The following well-known relation exists[2]:

Cp − CV = V T
�2

�
,
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where� is the volume coefficient expansion and� is the isothermal compressibility given by

� = 1

V

(
�V

�T

)
p

,

� = − 1

V

(
�V

�p

)
p

.

For negative�, Cp is less thanCV and can become negative.
Using the equality(�V/�T )p = −(�V/�p)T (�p/�T )V we can also write

Cp − CV = T

(
�p

�T

)
V

(
�V

�T

)
p

. (25)

This shows thatCp can drop belowCV if the isobaric volume coefficient of expansion becomes negative
which is the case in some regions ofFig. 12.
We leave now general considerations of phase transitions, specific heat, caloric curves, etc. and ex-

plore the predictive powers of the canonical thermodynamic model in producing detailed data in heavy
ion reactions. Specifically, we will investigate how effective the canonical thermodynamic model is in
predicting isotopic yields in some specific reactions. For this we need to go beyond the production of
hot fragments that the canonical thermodynamics will give. To obtain yields of specific final products,
we need to investigate how fragments at non-zero temperatures will decay. The next sections address
this issue.

7. Corrections for secondary decay

The statistical multifragmentation model described above calculates the properties of the collision
averaged system that can be approximated by an equilibriumensemble. Ideally, onewould like tomeasure
the properties of excited primary fragments after emission in order to extract information about the
collisions and compare directly with the equilibrium predictions of the model described in this report.
However, the time scale of a nuclear reaction(10−20s) is much shorter than the time scale for particle
detection(10−9 s). Before reaching the detectors, most particles decay to stable isotopes in their ground
states. Thus before any model simulations can be compared to experimental data, it is indispensable to
have a model that simulates sequential decays. This turns out to be not a simple task.
In this section, we follow the techniques of Refs.[57,58]to calculate the secondary decay.We identify

some issues that can be accurately addressed and others that are less controlled and may contribute
uncertainties that influence the final results. Later, we calculate the secondary decay of excited nuclei
predicted by the statistical multi-fragmentation model and compare the final ground state yields to recent
measurements.

7.1. Levels and level densities

To calculate the secondary decay corrections, one must specify both the high lying states that are
mainly populated at freeze-out and the lower lying states whose populations increase as these excited
nuclei decay towards the ground state nuclei that are experimentally measured. In the previous sections,
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the discussion was centered about the states that are populated at freeze-out.While in principle all nuclear
states may be involved at freeze-out, the vast majority of fragments are excited to the particle unbound
continuum.
The level densities in the unbound continuum influence the overall yield of unbound nuclei at freeze-out

as well as the sequence and the number of particle decays. In principle, interactions between fragments
and their surroundingsmodify the states and their excitation energies. The vanishing of the surface tension
�(T ) in the free energy expression at the critical temperatureTc = 18MeV reflects such considerations.
Few experimental constraints on continuum level densities exist, however, even when the nuclei are
isolated. Thus, uncertainties in the continuum level densities introduce uncertainties into the calculated
results.
Following Ref. [57], we represent the continuum level densities corresponding to the internal free

energies in Eqs. (7) and (13) by the expression

�SMM(E∗, J ) = �SMM(E∗)f (J, �) , (26)

where �SMM(E∗) = �FG(E
∗)e−bSMM(aSMME∗)3/2, bSMM = 0.07A−1.82(1+A/4500), aSMM = A/�0 +

5
2�0A

2/3/T 2
c , J is the spin,E∗ is the excitation energy andA is the mass of the fragment. For light

and medium mass nuclei,aSMM ≈ A/8. Here,

�FG(E
∗) = a

1/4
SMM√

4�(E∗)3/4
exp

(
2
√
aSMME∗

)
, (27)

f (J, �) = (2J + 1)exp[−(J + 1/2)2/2�2]
2�2

, (28)

�2 ≈ 0.0888
√
A · E∗/8)A2/3 , (29)

andE∗ andZare the excitation energy and charge of the fragment. For further details, we refer the reader
to Ref.[57].
In contrast to the continuum level densities, the discrete level densities need no corrections for the

influence of interactions because these levels become important only much later in the decay after the
fragments havedecoupled from their surroundings. For this purpose,weuse the spectroscopic information
of isolated nuclei withZ<12where the information is available. For 12�Z�15, low-lying states are not
well identified experimentally and a continuum approximation to the discrete level density[59] was used.
For all fragments withZ�15 and excitation energies between the domains of discrete and continuum
level densities, the level densities were smoothly interpolated[57].
Where the experimental information for nuclei withZ�15 is incomplete, values for the spin, isospin,

and parity were chosen randomly in the decay calculations as follows: spins of 0–4 (1
2–

9
2) were assumed

with equal probability for even-A (odd-A) nuclei, parities were assumed to be odd or even with equal
probability, and isospins were assumed to be the same as the isospin of the ground state. This simple
assumption turns out to be sufficient sincemost of spectroscopic information is known for these low-lying
states.
For excitation energies where little or no structure information exists, levels were assumed to be

specified by the relevant level density expression. Groups of levels were binned together in discrete
excitation energy intervals of 1MeV forE∗ <15MeV, 2MeV for 15<E∗ <30MeV, and 3MeV for
E∗ >30MeV to reduce computer memory requirements. The results of the calculations do not appear to
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be sensitive to these binning widths.A cutoff energy ofE∗
cutoff/A=5MeVwas introduced corresponding

to a mean lifetime of the continuum states at the cutoff energy about 125 fm/c. Where unknown, parities
of these states were chosen to be positive and negative with equal probability and isospins were taken to
be equal to the isospin of the ground state of the same nucleus. In this fashion, a table of states for nuclei
with Z�15 was constructed.

7.2. Sequential decay algorithm

Before sequential decay starts, hot fragments withZ�15 were populated over the sampled levels in
the prepared table according to the temperature. For theith level of a given nucleus(A,Z)with its energy
E∗

i and spinJi , the initial population is

Yi = Y0(A,Z)
(2Ji + 1)exp(−E∗

i /T )�(E∗
i , Ji)∑

i(2Ji + 1)exp(−E∗
i /T )�(E∗

i , Ji)
, (30)

whereY0 is the primary yield summed over all states of nucleus (A,Z) andT is the temperature associated
with the intrinsic excitation of the fragmenting system at breakup.
Finally, all fragments will decay sequentially through various excited states of lighter nuclei down to

the ground states of the daughter decay products. The decay of fragments withZ>15 was calculated
according to the fissionmodel of Ref.[60]. The subsequent decay of excited fission fragments withZ�15
was calculated according to theHauser–Feshbach algorithm described here. In this algorithm, eight decay
branches ofn, 2n, p, 2p, d, t, 3He and alpha were considered for the particle unstable decays of nuclei
with Z�15. The decays of particle stable excited states via gamma rays were also taken into account for
the sequential decay process and for the calculation of the final ground state yields. If known, tabulated
branching ratios were used to describe the decay of particle unstable states.Where such information was
not available, the branching ratios were calculated from the Hauser–Feshbach formula[61],

�c

�
= Gc∑

d Gd

, (31)

where

Gd = 〈IdIeId3Ie3|IpIp3〉2
|Jd+Je|∑

J=|Jd−Je|

|Jp+J |∑
l=|Jp−J |

1+ �p�d�e(−1)l

2
Tl(E) (32)

for a given decay channeld (or a given state of the daughter fragment).Jp, Jd , andJe are the spins of
the parent, daughter and emitted nuclei;J andl are the spin and orbital angular momentum of the decay
channel;Tl(E) is the transmission coefficient for thelth partial wave. The factor[1+ �p�d�e(−1)l]/2
enforces parity conservation and depends on the parities� = ±1 of the parent, daughter and emitted
nuclei. The Clebsch–Gordon coefficient involvingIp, Id , andIe, the isospins of the parent, daughter and
emitted nuclei, likewise allows one to take isospin conservation into account.
For decays from empirical discrete states andl�20, the transmission coefficients were interpolated

from a set of calculated optical model transmission coefficients; otherwise a parameterization described
in Ref. [59] was applied.
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8. Comparisons to data

Even though the structure of the low-lying states of the fragments plays little role in properties of the
hot system, these structure effects become critical when the fragments cool later by secondary decay.
In the sequential decay algorithm described in the last section, in addition to more sophisticated level
densities, empirical bindingenergiesof the knownnuclei are incorporated.Where theempiricalmassesare
lacking, an improved mass formula[16,57]is employed. To be self-consistent, the samemasses and level
densities are used both in the thermodynamicmodel which produces the excited primary fragments and in
the subsequent sequential decay. This self-consistency requirement appears to be necessary[16] for some
observables. The resulting code which combines the thermodynamic model with the sequential decay
algorithm is referred to as ISMM for improved Statistical Multifragmentation Model in the following
sections of the report.
To illustrate the capabilities of the thermodynamic model, we calculate the final ground state elemental

and isotopic yields for systems withA0 = 168 andZ0 = 75 andA0 = 186 andZ0 = 75 atT = 4.7MeV,
corresponding toE∗/A ≈ 5MeV. In all the following calculations, the freeze-out density is taken to be
1/6 of the saturation density. These two systems were chosen because they have the same proton fractions
as the combined systems formed in central112Sn+ 112Sn and124Sn+ 124Sn collisions, respectively.
However, the overall size and excitation energy of these systems have been reduced below that of the
corresponding compound nuclei to reflect the loss of particles and excitation energy to pre-equilibrium
emission prior to the multi-fragment breakup. These parameters have not been adjusted to obtain a best
fit of the data.
In the following, we illustrate the capability of this thermodynamic model to describe experimental

charge, mass and isotopic yield distributions.We also compare experimental and calculated observables,
such as the isotopic temperature and the isoscaling parameters, which are constructed from these yields.

8.1. Charge and mass distributions

Calculations of the mass distribution for excited primary fragments are shown inFig. 15for a system
withA0=168 andZ0=75 atT =4.7MeV. The distributions of the primary fragments directly obtained
from the thermodynamic model are shown as dashed lines with open points while the solid line with
solid points represent the distributions of the final fragments after sequential decays. Certain differences
between primary and final spectra can be expected. Heavier fragments formed in themultifragment stages
decay to smaller fragments, shifting the distribution to lower masses. In addition, the decay produces a
large increase in the hydrogen and helium particles, because these are the main products of the decay of
the heavy fragments.
Thedifferentialmultiplicities dM/d� for variousmasseswithA�20 are plotted in anexpanded scale in

Fig. 16for both theA0=168 and 186 systems. For comparisons, experimental data obtained by averaging
over 70◦��cm�110◦ for central112Sn+ 112Sn and124Sn+ 124Sn collisions atE/A = 50MeV [62]
are plotted as open and solid points in the left and right panels, respectively. The calculations reproduce
many features of the mass distribution.
The relative normalization of the calculation can be increased by increasing the size of the source

or by making its angular distribution sideways peaked. The slope of the mass distribution can be made
more steep by increasing the source temperature. There are indications that the experimental angular
distributions are not isotropic and that pre-equilibrium emissionmechanismsmay contribute to the yields
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Fig. 15. Predicted mass distributions from the multifragmentation of a source nucleus with mass number 168 and charge number
75. The open circles are primary fragments yields and the closed circles are yields after secondary decay.

Fig. 16. Predicted mass distributions (A�20) from the multifragmentation of asource nuclei withA0 = 168 andZ0 = 75 (left
panel) andA0=186 andZ0=75. The dashed lines are the predicted primary yields and the solid lines are predicted yields after
secondary decay. For comparison, data from the multifragmentation of central collisions of112Sn+ 112Sn are shown as open
symbols (left panel) and closed circles for124Sn+ 124Sn reaction (right panel)[62].
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Fig. 17. Predicted charge distributions from the multifragmentation of asource nucleus withA0 = 168 andZ0 = 75. The open
circles are primary fragments yields and the closed circles are yields after secondary decay.

of the lighter fragments. Accordingly, we do not fit the calculations to the experimental data in this
article, but defer such detailed analyses until more experimental data that can constrain such effects
become available.
The charge distributions exhibit similar behaviour as the mass distributions. For completeness, we

include the charge distributions for theA0 = 168 andZ0 = 75 andA0 = 186 andZ0 = 75 in Figs. 17
and18. The same conventions for the mass distribution figures (Figs. 15and16) are used. In the break
up calculations, the odd–even effects are evident. These occur because pairing and shell effects are not
completely washed out in our level density expressions at a temperature ofT =4.7MeV.As the secondary
decaywashes out such structures, these odd–even effects in the primary distribution have little or no effect
on the final fragment distribution.

8.2. Isotopic distributions

In Fig. 19, the isotopic distributions for carbon and oxygen isotopes are plotted for the two sources.
Using the same convention as before, the dashed lines correspond to the distributions of the primary
fragments while the solid lines represent the final distributions after sequential decay. As expected, the
more neutron-rich system withN0/Z0 = 1.48 preferentially produces more neutron-rich isotopes than
the neutron deficient system withN0/Z0 = 1.24. In all cases, the primary distributions are much wider
and more neutron-rich than the final distributions. The experimental isotope distributions (data points)
agree more with the final results obtained after secondary decay than with the primary distributions.
Nonetheless, the widths of the experimental distributions exceed those of the final distributions and are
more neutron-rich. This suggests that the predicted corrections for secondary decay may be somewhat
too large.
Themean neutron to proton ratios〈N/Z〉 for each element provides another observable with sensitivity

to the isospin asymmetry dynamics of the reaction. The dependence of the calculated primary values on
the〈N/Z〉 of the total system is much stronger than that of the final values. This can be seen inFig. 20
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Fig. 18. Predicted charge distributions (Z�8) from the multifragmentation of asource nuclei withA0 = 168 andZ0 = 75
(left panel) andA0 = 186 andZ0 = 75. The open and solid points are data from Ref.[62]. SeeFig. 16 for explanation of
symbols used.

where the primary (left panel) and final (right panel)〈N/Z〉 values are compared for the two systems. The
differences of the primary values for〈N/Z〉 of the two systems are large, reflecting the large difference in
the initial isospin asymmetry of the two systems. The largest values for〈N/Z〉 occur forZ ≈ 8,20, etc.,
values corresponding to nuclei where one can have either closed proton or neutron shells. Such nuclei
can remain comparatively well bound even for large value ofN/Z. Both of these enhancement and the
difference between the〈N/Z〉 values for the two systems are diminished in the final distributions, which
are both narrower and located closer to the valley of beta stability.
Fig. 21shows measured and calculated primary and final values for〈N/Z〉 as functions of the element

numberZ. The left- and right-hand panels provide the〈N/Z〉 values for the neutron-deficient and neutron-
rich systems, respectively. The calculated final distributions reproduce the measured values well. It is
rather curious that the experimental〈N/Z〉 values exhibit the odd and even effects as a functionZ. Such
staggering is much less obvious in the neutron-rich system. For reference, the〈N/Z〉 for the abundances
of naturally occurred isotopes are plotted as stars in both panels of the figure.

8.3. Isoscaling

The dependence of the isotopic distributions on theN0/Z0 of the colliding system can be more sen-
sitively explored by the use of isotopic ratios[62–65]. In particular, the ratio,R21(N,Z) = Y2(N,Z)/
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Fig. 19. Isotope distributions for carbon and oxygen fragments. The dashed and solid lines correspond to the predicted primary
and final yields respectively. The open and solid points are data from Ref.[62].

Y1(N,Z), of yields from two different reactions, labelled here as 1 and 2, has been shown to exhibit an
exponential relationship as a function of the isotope neutron numberN, and proton number,Z [62–74].

R21(N,Z) = C exp(�N + Z) , (33)

whereC is a normalization factor and� and are the isoscaling parameters.
Calculations with a variety of different statistical models show that the isoscaling relationship is strictly

obeyed by the primary fragments in these models[64,66,71]. Surprisingly the isoscaling relationship is
also obeyed by fragments produced in dynamical models such as the asymmetrized molecular dynamical
model[70]. In all cases, the isoscaling parameters are related to the isospin asymmetry of the collisions
and to the form of symmetry energy or, equivalently, asymmetry term of the EOS chosen in the model
[64,66,70,71,75].
Neglecting for simplicity the Coulomb interactions between fragments and environment, the exponen-

tial dependence of the isoscaling relationship can be easily understood from the expression for the yields
for a fragment with neutron and proton numbersN andZwithin the grand canonical limit of the present
equilibrium model[76]:

Yi(N,Z) = Vi

A3/2qN,Z(T )

�3Ti
exp[(Z 
p,i + N 
n,i + BN,Z)/T ] . (34)
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Fig. 20. The mean neutron to proton ratios as a function of the charge of the emitted fragmentZ for the two systems. The left
and right panels correspond to the calculated results from the primary and final fragments.

Here,qN,Z(Ti) represents the internal partition function of the fragment,Vi the free volume of the system,

�T =
√
2�22/mT i ,m the nucleonmass and
p,i (
n,i) the chemical potential associated with free protons

(neutrons) for theith reaction which produces a system at temperatureTi . If the temperature in the two
reactions are expected to be the same (as in the Sn reactions described here), the chemical potentials
p,i

and
n,i contain the only reaction dependent factors in this exponential. In this limit,� = [
n,2− 
n,1]/T
and = [
p,2 − 
p,1]/T .
The symbols inFig. 22represent the isotopic ratios calculated by the canonical thermodynamic model

described in this review. InFigs. 22and23, the followingconvention is adopted.Wechooseclosedsymbols
and solid lines for evenZand open symbols and dashed lines for oddZstarting withZ=1 for the leftmost
line. The lines are best fits of the calculatedR21 ratios to Eq. (33); the lines are essentially linear and
parallel on this semi-log plot consistent with a single constant isoscaling parameter�primary= 0.50. The
spacing between these lines corresponds to the increase inR21 for unit increases inZ; the observed equal
spacing is consistent with a single constant isoscaling parameterprimary= −0.64.
For comparison to the data, we only examine the isotope ratios where there are data with sufficient

statistics.The symbols in the bottompanel ofFig. 23represent the predicted isotopic ratios after sequential
decays. The lines are nearly parallel to the lines inFig. 22on average and the isoscaling parameters
�final = 0.46 andfinal = −0.52 are comparable to the primary values. In detail especially when the
isotopes away from the valley of stable nuclei are considered, the trends are not as clearly consistent with
the isoscaling law as are the trends of the primary distribution. The larger change in the values may
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Fig. 21. The mean neutron to proton ratios as a function of the charge of the emitted fragmentZ for the neutron deficient
(left panel) and neutron-rich (right panel) systems. For comparison, data from the multifragmentation of central collisions of
112Sn+ 112Sn are shown as open symbols (left panel) and as closed circles for124Sn+ 124Sn reaction (right panel)[62]. For
reference, the meanN/Z ratios from naturally occurred isotopes are shown as stars.

Fig. 22. Predicted yield ratios,R21(N,Z) = Y2(N,Z)/Y1(N,Z) from primary fragments for the two systems studied in this
work. The lines are best fit to the symbols according to Eq. (33). Different lines correspond toZ =1–8 starting with the leftmost
lines with three points beingZ = 1.
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Fig. 23. Top panel: Experimental isoscaling behaviour exhibited by the central112Sn+ 112Sn and124Sn+ 124Sn collisions.
The data are the nuclide yield ratios,R21(N,Z) from the two reactions plotted as a function ofN. The isotopes of different
elements lie along different lines. The solid and dashed lines represent the best fit to Eq. (33). Bottom panel: Predicted yield
ratios,R21(N,Z) obtained from the final yields for the two systems studied in this work. The symbols and lines have the same
convention as the data used in the top panel andFig. 22.

arise from the approximation of the Coulomb interaction used in the model. In the top panel, the data are
shown as symbols. The experimental isoscaling parameters are�data=0.36 anddata=−0.42. The slopes
from the calculations are flatter suggesting that the temperature of 4.7MeV used as the input parameter
in the model may be too low. However, if the temperature is increased so that the isoscaling predictions
agree with the data, the other observables such as the mass and charge distributions as well as the isotope
distributions may no longer agree. As stressed earlier, the current work is not to use the optimized set of
model parameters but rather to compare the trends of data with the model calculations. More constraints
and study are needed to optimize the agreement with data.

8.4. Isotopic temperatures

Starting from the grand canonical expression for the yields (Eq. (34)), it is also possible to construct
a double ratio that minimizes the sensitivity to the isospin asymmetry while maximizing the sensitivity
to the temperature. By doing so, one can construct an isotopic thermometer, whereby the temperature is
extracted from a set of four isotopes produced in multifragment breakups as follows[77]:

Tiso= �B

ln(aR)
, (35)

where

R = Y (A1, Z1)/Y (A1 + 1, Z1)

Y (A2, Z2)/Y (A2 + 1.Z2)
, (36)

�B = B(A1, Z1) − B(A1 + 1, Z1) − B(A2, Z2) + B(A2 + 1, Z2) (37)
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and

a = (2JZ2,A2 + 1)(2JZ1,A1+1 + 1)

(2JZ1,A1 + 1)(2JZ2,A2+1 + 1)

[
A2(A1 + 1)

A1(A2 + 1)

]3/2
. (38)

In this ratio derived from Eq. (36) for the ground state yields,Y (A,Z) is the yield of a given fragment
with massA and chargeZ; B(A,Z) is the binding energy of this fragment; andJZ,A is the ground state
spin of the nucleus. In the context of the grand canonical ensemble, Eq. (35) has been regarded as an
effective or “apparent” temperature that may differ somewhat from the true freeze-out temperatureTdue
to the influence of secondary decay and other cooling mechanisms.
The influence of secondary decay on the isotopic temperatures can be clearly observed because it leads

to variations in the values for the temperature that depend on the isotopes used to construct the ratio. The
variations are universal, observed in many different reaction systems and thus can be used to assess the
effectiveness of sequential decay models. One origin of these variations is the feeding from higher lying
particle bound states. Such effects can be modeled by changing the value for the statistical factor “a” and
making it temperature dependent. This and additional feeding from the decay of heavier particle unbound
nuclei can be modeled by the secondary decay formalism described in the previous section.
To illustrate the influence of secondary decay on isotope temperature measurements, measured and

calculated final temperatures have been extracted from double ratios ofZ = 2–8 fragments and plotted
in Fig. 24. To reduce the influence of secondary decay, we include only isotope thermometers with large
values for�B in this figure. This requirement restricts comparisons to three types of thermometers: (a)
Tiso(

3,4He) with Z2 = 2, A2 = 3, (b) Tiso(11,12C) with Z2 = 6, A2 = 11, and (c)Tiso(15,16O) with
Z2 = 8, A2 = 15. We note that the thermometer (a) involves the light particle pair3,4He while thermo-
meters (b) and (c) concern only intermediate mass fragments withZ = 3–8. The solid lines show
corresponding ISMM predictions for these three types of thermometers as a function ofA1.
Similarities in the variations of the calculated and measured temperatures allow insight into their

origin. Each panel ofFig. 24corresponds to fixed values ofZ2 andA2; the observed variations inTiso
are therefore correlated withZ1 andA1. The highest values forTiso involve10Be (Z1=4, A1=10) and
18O (Z1 = 8, A1 = 18). The calculations attribute this increase to enhancements in the yields of these
nuclei due to�-ray feeding from their many low-lying particle bound states[78–80]. Other thermometers
in Fig. 24provide temperature values that are significantly lower than those involving10Be and18O.Most
thermometers are significantly lower than the primary temperature of 4.7MeV, depicted by the horizontal
dashed line in the three panels.
Both calculated and measured values display aZ or A dependence inTiso. Calculated values for

Tiso(
15,16O are about 0.5MeV lower than those forTiso(

11,12C), which are about 0.2MeV lower than
Tiso(

3,4He). There is also a trend for isotopic temperature values to decrease as a function ofA1. The
calculated decrease ofTiso with A1 andA2 reflect the increasing importance of multi-step secondary
decay contributions to the yields of these heavier nuclei. Such multi-step decays make the system appear
cooler because the final ground state nuclei originate from the decay of an ensemble of unstable nuclei
that are less excited than the original ensemble.
We note that the experimentalTiso(3,4He) temperatures (solid symbols in the left panel) are sys-

tematically higher than the corresponding ISMM values (solid line). As these thermometers derive their
sensitivity to the temperature from the large binding energy difference between3He and4He, the difficulty
in reproducing these quantities may arise if there are significant pre-equilibrium production mechanisms
for light particles such as3He [80]. To illustrate this effect, we assumed that 2/3 of the measured3He
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Fig. 24. Isotopic temperatures extracted from three types of thermometers. Experimental data are shown as the symbols. The
lines are calculations. For reference, the input primary temperature of 4.7MeV is shown as the horizontal dashed lines. (See text
for details on the dotdashed line in the left panel.)

yield is of a non-thermal origin. This increases the3He yield by a factor of three; calculations including
this pre-equilibrium enhancement are shown as the dot dashed line in the left panel. The success of this
resolution of the discrepancies betweenTiso(

3,4He) andTiso(11,12C) suggests that it may be necessary to
make careful estimations of the contributions from pre-equilibrium emission before isotope temperature
measurements involvingTiso(3,4He) will be fully accurate.

9. Summary

The canonical version of the thermodynamic model has helped clarify many aspects of intermediate
energy heavy ion collisions. The obvious advantage is that, as opposed to the grand canonical model, it
has an exact number of particles. The predictions of the grand canonical model (which really applies to
very large systems) can differ significantly from those of the canonicalmodel specially in the intermediate
energy regime. The canonical model helps us to understand the order of phase transition, the caloric curve
and the possibility of negative specific heat. The model gives quantitative fits to experimental data on
isotopic yields and the phenomenon of isoscaling, now well established in intermediate energy heavy ion
collisions. The virtue of the model is also its simplicity. Most of the calculations reported in this work
can be carried out quite easily.
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Appendix A. Equilibrium, reactions and reaction rate time scales

A basic assumption of statistical models is that equilibrium is reached in the time scale of the reaction.
For fragment or composite particle distributions a complex set of reactions takes places[81,82]. The
processes involved in the collision of heavy ions can be modeled in a manner that is similar to nucle-
osynthesis in a dense, heated and evolving system such as in the expansion of the early universe and
in supernovae explosions. The starting point of such a description is then a dense and heated system of
neutrons and protons which combine through a set of reactions to make the composite nuclei from the
lightest nuclei such as deuterons, alpha particles, etc. all the way up to much heavier and complex nuclei.
By way of illustration and also for contrast, the nucleosynthesis in the early universe occurs through a
set of two body reactions with the first element of the chain being an electromagnetic radiative capture
of a neutron plus proton to a deuteron with an emitted photon carrying away the excess energy. After
this first electromagnetic process, light elements are produced by a sequential set of two body reactions
such asd + d → He3 + n, d + d → t + p, t + d → He4 + n, . . . . Nuclei up to Li are believed
to be produced at their equilibrium concentration in big bang nucleosynthesis models. The abundance
of heavy elements comes from processes involved in supernovae. The study of these processes is the
area of nuclear astrophysics and heavy ion collisions offer the opportunity to study similar processes and
phenomena in the laboratory.
In heavy ion collisions, electromagnetic processes are too slow over the time scale of the collision

to produce the observed distribution of composites or produced particles. A typical time scale of the
collision is 10−22s or 30 fm/c which is much shorter than any electromagnetic process time scale.
Densities in heavy ion collisions can be high enough for a three body process to occur such asn + p +
N → d + N, where the nucleonN can carry away the excess energy. At very high energies, meson
production processes occur, so that ad is formed in radiative pion emission ofn+ p. Heavier composite
particles evolve through reactions such as those listed above. However, it should be noted that because of
possible very high initial densities, multi body processes can occur besides two body processes even for
composites heavier than the deuteron. These only enhance the approach to equilibrium.At RHIC energies,
particle production becomes very important, and reactions leading to new particles have been studied
[82,83].
As an example of a reaction rate approach consider the formation of a deuteron through the process

p + n + N → d + N . The time evolution of the deuteron density�d can be obtained from an equation
involving the proton density�p, neutron density�n, and nucleon density�N :

d�d

dt
=

�p�n


( �d

�n�p

)
eq

− �d


 �N 〈�[N + d → n + p + N ] × v〉


 . (A.1)
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Here (�d/�n�p)eq is the equilibrium ratio of the densities ofd’s to n’s andp’s and is a function of
temperature. The〈 〉 term in (A.1) involves the product of the breakup cross section of deuterons induced
by nucleons andv, which is the relative velocity of theN andd pair. This product is averaged over the
velocity distribution of the pair. In obtaining the expression in (A.1) we used detailed balance which
relates the forward rate for the formation processp + n+N → d +N to the backward rate of the break
up or absorption processd +N → p + n+N . Equilibrium is reached when the forward rate is equal to
the absorption rate. Initially, the deuteron density is being built up by forward processes which involves
the product of proton, neutron and nucleon densities, but later in this time evolution deuterons will start to
be absorbed by backward processes which involve the newly formed deuterons and the existing nucleons.
Once equilibrium is reached these underlying processes vanish in the description of the deuteron density,
which is now described by phase space factors with temperature and volume playing a dominant role.
Large volumes reduce composites since nucleons are less likely to be near each other to combine and
high temperatures increase break up probabilities. Binding energy terms appear as Boltzmann factors and
enhance composite densities.
We can question whether rates are fast enough to produce equilibrium distributions. To answer this

question we consider the following simplified expression for a reaction rate:�N × � × v. For�N we take
nuclearmatter density or 0.15nucleons/fm3. Typically, temperatures are 10’s of MeV for medium energy
collisions and a temperature of 10MeV has a kinetic energy of 15MeV= (1/2)m(v/c)2. Forv/c = 1/5,
a cross section≈ 1 fm2 will have a rate 1022s−1. The reciprocal of this rate is the reaction rate time scale
which is 10−22s. Thus, a cross section of 1 fm2 will have a reaction rate time scale that is equal to the
characteristic time scale of the collision. Under these circumstances equilibrium will be reached.
Next, consider the prototype two body reactionA+B → C +D. The rate of growth of the density of

C can be related to the chemical activityA= 
A + 
B − 
C − 
D, where
A is the chemical potential of
A, etc. Specifically, the time evolution of the density ofC is

d�C

dt
= �A�B〈�[A + B → C + D] × v〉(1− exp[−A/T ]) . (A.2)

At equilibrium
A +
B =
C +
D. Thus, the factor(1−exp[−A/T ]) → 0. Near equilibriumA>T and
(1− exp[−A/T ]) → A/T . In this limit the reaction rate Eq. (A.2) is linear in the chemical activityA.
Such linear connections are known as Onsager relations where the chemical activity acts as a generalized
force,X, and the left-hand side of Eq. (A.2) is interpreted as a generalized velocityJ. ThenJ = LX,
whereL is the proportionality constant betweenJ andX. Far from equilibrium, this linear relation is no
longer valid sinceA is, in general, not small compared toT.
As a final consideration in discussing reaction rates we note that if the equilibrium concentration of

the particle of interest is small, then the reaction rate constant is somewhat more complicated than the
simplified expression used above. To illustrate this situation we mention the case of pion production. For
example, for the reactionN + N → N + N + �, the rate equation for the pion density is

d(��)/dt = [�2N − (�2N ∗ ��/(��)eq] × 〈�v〉 . (A.3)

Here,(��)eq is the equilibrium pion density which depends on temperature. This rate equation can be
solved to give��(t) = (��)eq∗ (1− exp[−� × t]). The rate constant is

� = 〈�v〉 × �2N/(��)eq . (A.4)
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The result of Eq. (A.4) differs from the simplified reaction rate used above by an important factor
�N/(��)eq. This factor can be very large when the equilibrium density of pions is small compared to
the nucleon density. It was one of the reasons why the results of[82] led to the conclusions that pions
would be in chemical equilibrium, a result which differed from a previous result in[84]. While low
equilibrium concentration can enhance reaction rate constants and reduce equilibration time scales, some
examples of other enhancement factors are the presence of two or more channels to the final state, the
presence of secondary processes, high densities which allowmultiparticle production processes above the
two body type just considered. For example, the time scale for kaon production is considerably reduced
through pion induced reactions, where the pions are copiously produced in the initial nucleon–nucleon
collisions as first noted in[82].

Appendix B. Antisymmetry and all that

Our whole discussion started fromEq. (2) in Section 2 which then led to Eq. (5), the recursive formula.
Eq. (2) is not quantummechanical. The partition function ofni particles takes this simple form only under
situations of low density and high temperature. We argue here that the approximation is quite good for
intermediate energy heavy ion collisions.
We start with qualitative arguments. The volumes used here are about three times or more of the

normal volume. At low temperature(≈ 4MeV) where one might imagine the approximation to fail, it
survives because many composites appear thus there is not enough of any particular species to make
(anti)symmetrisation an important issue.At much higher temperature the number of protons and neutrons
increase but as is well-known then! correction takes the approximate partition function towards the
proper one at high temperature. In a hypothetical world, the problem could get very difficult. Such a
scenario would arise if the physics was such that at low temperature we only had neutrons and protons
and no composites. An even worse situation would be if we had only neutrons (or protons). With these
preliminaries let us proceed to estimate quantitatively the errors involved in actual cases that one might
encounter in intermediate energy heavy ion collisions.
The recursive relation, Eq. (5), is not limited to the approximation of Eq. (2). It is shown in[18] that

by regarding the grand partition function (in our case this grand partition function incorporates correct
(anti)symmetry among particles) as the generating function of the canonical partition function one derives
a relation like Eq. (5)

QN() = 1

N

N∑
k=1

kxkQN−k() , (B.1)

wherexk is not a one-particle partition function but is to be obtained from an expansion of the grand
partition function.We illustrate this with first the example of only protons filling up orbitalsi, j, k, . . . in
a box. Now

lnQgr(, 
) =
∑
i

ln(1+ e
−�i )

=
∑
i

∑
j

(−)j−1

j
ej (
−�i ) . (B.2)
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The coefficient of e
k is xk which then givesxk = ((−)k−1/k)
∑

i e
−k�i . When this expression forxk

is used in Eq. (B.1) it generates the correct partition function. Orbitals are given occupancies greater
than one and then eliminated by subtraction. This can lead to severe round-off errors when applied to
degenerate Fermi systems but will not affect the application we envisage here. The number of protons is
given by

Z =
(
x1QZ−1

QZ

+ 2x2QZ−2

QZ

+ · · · + ZxZQ0

QZ

)/
Z . (B.3)

The value ofQ0 is 1.
Anticipating generalisation we will callxk in the above casey[k]

1,0. The subscript 1,0 means it is a
“composite” with one proton and no neutron. The superscriptkmeans it is obtained from thekth term in
the expansion;y[k]

1,0 will contribute toxk,0.
If instead we had a boson, deuterons for example, we would have

ln[Qgr.can(, 
p, 
n)] =
∑
i

− ln(1− e
p+
ne−�i ) (B.4)

=
∑
i

∑
j

1

j
ej (
p+
n−�j ) . (B.5)

Thus in the case of deuteronsy[k]
1,1 (which would contribute toxk,k) is given by

∑
i(1/k)e

−k�i .
We can treat an assembly of protons, neutrons, deuterons, tritons, etc. If the dissociating system hasZ

protons andN neutrons the recursive relation is

QZ,N = 1

Z

∑
i=1,Z,j=0,N

ixi,jQZ−i,N−j . (B.6)

The average number of a composite withi1 protons andi2 neutrons is given by

〈ni1,i2〉 = y
[1]
i1,i2

QZ−i1,N−i2/QZ,N + 2y[2]
i1,i2

QZ−2i1,N−2i2/QZ,N + · · · . (B.7)

Unless one is in an extreme degenerate fermi system, one can evaluate they factors by replacing sums
with integration. For example,y[n]

1,0=((−)n−1/n)
∑

i e
−n�i where the sum is replaced by

∫
e−n�g(�)d�=

2(V/h3)(2�m/n)3/2. HereV is the available volume.We have included the proton spin degeneracy;m is
the proton mass. For the deuteron,y

[k]
1,1= (1/k)

∫
e−k�g(�)d�. This is 3×23/2(V/h3)(2�m/)3/2ekEb/

k5/2 whereEb is the binding energy of the deuteron. It is clear how to compute contributions from other
composites.
We test the accuracy of the yields as calculated throughout themain text by comparingwith a calculation

in which the complete theory of symmetrisation and antisymmetrisation is used. Subject only to the
approximation that summation over discrete states has been replaced by an integration over a density of
states, the calculation is exact. The results are taken from[18]. We take the dissociating system to have
Z=25andN=25.The lowest temperature considered is 3MeV (onemight argue that at lower temperature
a model of sequential decay is more appropriate). The highest temperature shown is 30MeV. We take a
freeze-out volume in which the composites canmove freely as three times the volume of a normal nucleus
with 50 nucleons. In addition to neutrons and protons we allow the possibility of composites. Excited
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Table B.1
Comparison of calculations of average yields andE/A

Calc p n d t 3He 4He Z>12 Temp. E/A

(MeV) (MeV)

Approx 0.307 0.032 0.050 0.007 0.054 0.679 0.945 3 −7.863
Exact 0.306 0.031 0.051 0.007 0.053 0.696 0.945 3 −7.861
Approx 1.174 0.898 1.177 0.560 0.641 2.489 0.051 6 −4.117
Exact 1.117 0.856 1.195 0.553 0.638 2.573 0.050 6 −4.135
Approx 4.127 3.955 4.812 2.099 2.052 1.985 0.000 12 4.401
Exact 3.860 3.696 4.941 2.090 2.051 2.021 0.000 12 4.308
Approx 10.937 10.893 7.664 1.686 1.650 0.379 0.000 30 28.914
Exact 10.512 10.468 7.885 1.732 1.696 0.395 0.000 30 28.844

By exact we mean a calculation with proper symmetry. Sum over discrete orbitals in a box has been replaced by integration
as is the usual practice.

states of the composites were not allowed (they could have been included but the purpose of the exercise
was to compare two models: calculations without the inclusion of excited states were sufficient to reach
conclusions). Spins and binding energies for deuteron, triton,3He and4He are taken from experiments.
For higher mass composites the binding energy is taken from empirical mass formulas. For fermions, spin
1
2 was assumedand for bosons spin 0wasassumed. For eachZwe takeN=Z−1, Z,andZ+1.Wepresent
in Table B.1average yields of protons, neutrons, tritons,3He, 4He and the sum of yields of all nuclei
with charges greater than 12. The temperature range of 3–6MeV is of interest to many experiments.
We also show results at 30MeV. The approximation used in the main part of the text is seen to be
quite good.

Appendix C. Applications to other areas

While themain emphasis of this report is on the thermodynamicmodel for nuclear multifragmentation,
the applications of the approach developed in Section 2 to other areas will be mentioned in this appendix.
In particular, many problems in statistical mechanics can be reformulated in terms of Eqs. (1)–(5) in that
section. Each problem has a different choice for the factor� that appears in these equations and a different
interpretation of it within the general structure of those equations. We will now illustrate these remarks
with some examples.
Let us consider the following parallel between multifragmentation and permutations, which appear

when Fermi–Dirac and Bose–Einstein statistics are included into problems with identical particles. Any
permutation can be broken up into cycle classes and this cycle class decomposition is the basis for this
parallel. A given permutation ofA particles has a specific cycle class decomposition which specifies the
number of cycles of lengthk. This number is similar to the number of clusters of sizek in a fragmentation.
Moreover, the same type of sum rule holds aswith clusters. That is, for any given permutation, the totalA is
equal to the sum of the cycle length times the number of cycles of that length in that specific permutation.
The canonical partition function for non-interacting particles such as Fermi–Dirac or Bose–Einstein
particles in a box or in a one body potential well such as a harmonic oscillator well has a form given by
Eq. (2) in Section 2[85–87]. For identical particles in a box of volumeVand a systemat temperatureT, the
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�weight factor for a cycle of lengthk is that of Eq. (6) with theqk =1 in that equation for Bose–Einstein
particles andqk = (−1)(k+1) for Fermi–Dirac particles. Once the canonical partition function is obtained
from the recurrence relation of Eq. (5), the thermodynamic free energyF can be calculated and all other
thermodynamic quantities also follow fromF. For example, the pressure will have a form involving an
expansion in density and quantum volume which gives the quantum corrections to the ideal gas law
coming from the symmetrization or anti-symmetrization of the particles. Bose–Einstein particles in a
laser trap which is taken as a harmonic oscillator well have also been studied using this approach[87].
Fermions in a well can also be studied as mentioned in[87] and an extended discussion can be found
in [88]. Interactions can also be included along with quantum statistics as shown in[18]. Some further
observations regarding permutations are as follows. The result of Eq. (4) gives themean number of cycles
of lengthi in terms of the ratio of the two partition functionsA− i andA, and the� factor for that length.
Near the Bose–Einstein condensation transition long cycle lengths start to appear and this manifestation
of the transition is analogous to the appearance of large clusters around the liquid gas phase transition.
The results of Eq. (4) give the probability of a particular permutation, specified by itsn vector, being
present. In RHIC collisions many pions are produced and the application of the methods in Section 2
can also be given. For example Bose–Einstein effects associated with thermal pions have been studied in
[89,90]. For thermal pions at temperatureT in a volumeV the cycle length� factor of Eq. (6) is given by(

V T 3

2�2

)(m
T

)2( 1

k2

)
K2

[
k
m

T

]
.

Here,m is the mass of the pion andK2 is a MacDonald function. The� weight factor also appears in
expressions concerning the mean number of pions, its fluctuations, and in higher moments of the pion
probability distribution. Examples of these connections are:

〈N〉 =
∑

k�k ,

〈N2〉 − 〈N〉2 =
∑

k2�k ,

〈(N − 〈N〉)3〉 =
∑

k3�k . (C.1)

The sums that appear in Eq. (C.1) are over allk’s. Note that Poisson statistics has only unit cycles, ork=1
only in the sums. Then〈N2〉−〈N〉2=〈N〉. The presence of cycles of length 2 and higher cycles produces
departures from Poisson statistics. An important observation related to Poisson statistics comes from
the fact that coherent states have associated Poisson distributions. Moreover, departures from Poisson
statistics are associated with chaotic emission processes. At high temperatures, Maxwell–Boltzmann
statistics apply which leads to Poisson statistics in statistical models. The pion probability distribution for
havingN pions is the ratio of the canonical partition function for a system of sizeN divide by the grand
canonical partition function. This probability was investigated in[89] for the case of 158GeVPb+ Pb
collisions where it is shown to have a Gaussian shape with a width that is about 10% larger than a
Poisson distribution with the same mean number of pions. Many other models of pion and, in general,
particle multiplicity distributions can be developed in a similar manner by specifying another form for
�k. Once�k is given, all quantities of interest follow. The importance of a phenomenological approach
to multiparticle distributions, which is based on known distributions from probability theory, is shown in
[91–95]. Moreover, a wide range of physical processes can be accommodated using such an approach.
A specific and frequently used distribution is the negative binomial distribution where�k = xtk/k. The
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symbolx is thenegativebinomial parameterwhilet is anotherparameter that is important in fixing themean
number of pions and its variance:〈N〉=xt/(1− t) and〈N2〉−〈N〉2=〈N〉(1+(〈N〉/x)). The generalized
approach in[89,90] also includes several well-known specific probability distributions as special cases
of a more general distribution. Here, we will just mention a few examples of various phenomena that can
be found in[89,90]which are as follows: (1) Emission from systems with a variable signal to noise ratio,
where the signal is related to a Poisson processes which may originate from a coherent state and a noise
level given by a negative binomial distribution. (2) Field emission from Lorentzian line shapes and its
connection to a Feynman–Wilson gas[96]. (3) Pion laser models[97–99]and the role of Bose–Einstein
enhancement for a Poisson emitting source. (4) Multiparticle emission as a one dimensional randomwalk
process along a jet axis. A reader interested in the application of the methods of Section 2 to multiparticle
multiplicity distributions can find the details and several other individual cases in[89,90]. In a series of
papers[85,86], Hegyi has considered many interesting aspects of multiparticle production and has also
introduced a generalized distribution for its description.
Photon count distributions can also be developed using the approach of Section 2. In fact, early models

of pionic distributions[91] coming from nucleon–nucleon and nucleus–nucleus collisions were based on
photon count distributions[91]. The laser distribution of[91] is an example of a distribution which first
appeared in quantum optics and was then subsequently taken over into the area of particle production.
Thermal emission of photons have an�k factor that can be obtained as the zero mass limit of the pion
result given above; namely�k = 2V T 3/(�2k4). An additional factor of 2 appears for the spin of the
photon.
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